A multi-wavelength polarization monitor for use in optical networks is disclosed. A received light signal is beam split into first and second signal portions using a beam splitter having known optical characteristics. Each of the first and second signal portions is then dispersed onto a detector array using a first and second dispersive element having known polarization-dependent characteristics. The signal portions are dispersed other than as channelized data within known channels. The dispersed first and second signal portions are then detected using a first and a second detector array and electrical signals in dependence thereupon are provided for A/D conversion and digital signal processing. Using a processor the signals are spectrally augmented and the polarization of the light signal within each of the predetermined wavelength ranges corresponding to the known channels is determined in dependence upon the spectrally augmented signals and based on the known optical characteristics of the elements involved. The disclosed multi-wavelength polarization monitor is realised in a relatively simple manner and allows manufacturing of the same as a very compact integrated device at relatively low cost.

 
Web www.patentalert.com

< (none)

< Acousto-optic variable attenuator with active cancellation of back reflections

> Method and arrangement in connection with optical bragg-reflectors

> (none)

~ 00058