Microfabricated electrochemical device separators

   
   

Provided are electrochemical (e.g., double layer capacitor) cell designs, and methods of their manufacture, which reduce both cell size and impedance while maintaining inter-electrode dielectric integrity and cell performance and facilitating manufacturing. The designs adapt mircofabrication techniques from the field of semiconductor fabrication in order to form and pattern thin dielectric films on electrodes. Existing microfabrication techniques allow for the formation of dielectric (e.g., polyimide) films having a thickness of about 1 to 2 microns. Dielectric films formed on electrodes may be patterned according to well known procedures in the semiconductor fabrication field to provide area for unimpeded ion exchange between the electrodes. The patterning may produce contiguous or noncontiguous dielectric layers between the electrodes having porosity of about 30 to 80%, preferably about 60 to 80% while dielectric integrity is maintained. The result is a lower impedance, higher performance, easily fabricated double layer capacitor cell.

 
Web www.patentalert.com

< Microbes and methods for remediation

< Semiconductor trench structure

> Method of manufacturing a substrate having shallow trench isolation

> Method and apparatus for distributed signal processing among internetworked wireless integrated network sensors (WINS)

~ 00106