High speed fiber-optic attenuation modules

   
   

Unique multi-diffraction structures using electronically controlled Bragg diffraction devices such as acousto-optic (AO) devices to accomplish optical beam attenuation control functions. These variable optical attenuator (VOA) modules can be fully inertialess as they can use electronically programmable sub-microsecond speed AO devices to implement optical gain controls. These VOAs deliver desirable capabilities in one optically reversible unit, making high dynamic range, low loss, high power handling, ultra-fast, high optical isolation, broadband operation, self-aligning robust modules. These VOAs can be made essentially independent of the optical polarization of the incident light by the use of a unique fixed waveplate compensation technique within the VOA configuration that suppresses polarization dependent loss. Broadband gain control operation over several wavelengths can be achieved by controlling the frequency and electrical drive power of the chosen frequencies feeding the acousto-optic devices. Interleaver devices can be cascaded with the acousto-optic modules to improve wavelength selectivity of the overall VOA modules. Alternative embodiments can use electrically programmable Bragg gratings in polymer dispersed liquid crystal and acousto-optic tunable filter devices as Bragg grating devices. Embodiments are proposed using independently controlled Bragg diffractions using multiple drive signals connected to multiple device transducers. Drive signal formats can be digital, analog, or a combination for simultaneously driving the VOA modules. Dual-mode VOA module designs are also described using mirror positioning.

 
Web www.patentalert.com

< Method to produce stress-free optical waveguides to reduce stress-induced birefringence in planar lightwave circuit (PLC) devices

< Checkpointing for recovery of channels in a data processing system

> Bit error concealment methods for speech coding

> Rechargeable mobile hand-held fingerprint scanner with a data and power communication interface

~ 00176