Non-linear, gain-based modeling of circuit delay for an electronic design automation system

   
   

A non-linear, gain-based modeling of circuit delay within an electronic design automation system. The present invention provides a scalable cell model for use in early logic structuring and mapping for the design of integrated circuits. The scalable cell model includes a four dimensional delay model accepting input slew and gain and providing delay and output slew. By eliminating output loading as a requirement for delay computations, the scalable model of the present invention can effectively be used to provide accurate delay information for early logic synthesis processes, e.g., that precede technology dependent optimizations where the actual load of a cell is unknown. This scalable cell model considers: the impact of transition times on delay; complex gates having different input capacitances for different input pins; the impact of limited discrete cell sizes in the technology library; and design rules, e.g., maximum capacitance and maximum transition associated with gates. A technology library is analyzed and clustering is performed to select a cluster of cells for each cell group of a common functionality. A nominal input slew value is computed for all cells and a scaling factor is computed for each cell of each cluster. From each cluster, a four dimensional gain-based non-linear scalable cell model (look-up table) is generated. A default gain is computed for each scalable cell model and an area model and an input pin capacitance model are generated for each scalable cell model.

 
Web www.patentalert.com

< Method and apparatus for implementing persistent data in object oriented programs

< Mechanism to avoid explicit prologs in software pipelined do-while loops

> Method for determining object equality

> Software installation and validation using custom actions

~ 00191