A communications system employs digitally modulated signals operating in a band of frequencies that is divided into two or more non-overlapping channels, with each channel occupying no more than a predetermined maximum frequency band. A receiver system includes a front end processor and a receiver, the front end processor being configured to receive a data stream that represents the entire frequency band sampled at a rate of at least twice the highest frequency within the frequency band. The front end processor operates produces an output data stream that represents each channel within the band, with samples for each channel within the band at a rate that is a multiple of the symbol rate for the given channel. A receiver operates on this data stream sequencing through the multiple channels to phase correct, time correct, and equalize the data stream for all the constituent channels. The communications system may be a cable television system that provides for upstream communications through a coaxial cable from a subscriber to a "headend". Although such a system may be a conventional system whereby a single headend may service tens of thousands of subscribers and adhere to the DOCSIS standard for upstream communications, the system may also employ a much more widely distributed array of "mini-headends" that service an order magnitude fewer subscribers and that form the boundary between coaxial and optical fiber communications.

 
Web www.patentalert.com

< Wide band erbium-doped fiber amplifier with gain enhancement

< Variable polarization-dependent-loss source

> Optical switch having combined input/output fiber array

> Fiber-channel arbitrated-loop split loop operation

~ 00226