A single-electron transistor using nanoparticles is provided. The single-electron transistor includes a first insulating film, a gate electrode patterned in a stripe form on the first insulating film, a second insulating film formed on exposed surfaces of the first insulating film and the gate electrode in such a way that a stepped portion is formed at a boundary between the gate electrode and the first insulating film, first and second electrodes formed on the second insulating film in such a way that a groove is formed at the stepped portion to expose a surface of the second insulating film, the first and second electrodes being separated from each other by the groove, and nanoparticles positioned at the groove and contacting with the first and second electrodes, the nanoparticles being channels for electron transfer. The single-electron transistor is manufactured using previously prepared nanoparticles and a general semiconductor process, thereby enabling low cost, mass production and operation at room temperature.

 
Web www.patentalert.com

< Nanoscale particles synthesized within an assembled virion

< Silicon nanoparticle field effect transistor and transistor memory device

> Method and apparatus for continuous particle production using supercritical fluid

> Ophthalmic pharmaceutical compositions and methods for treating ocular inflammation

~ 00229