Master and slave Bluetooth-enabled devices communicate with other by sending messages using a carrier frequency that is constantly hopping from one frequency to another. In the prior art, each frequency in the sequence of frequencies, known as a hopping sequence, is determined as a known function of the master's Bluetooth address (BD_ADDR) and a universal time parameter. A computer-strong eavesdropper who is listening to one or more frequency bands over a period of time and within range of a user's piconet could determine the BD_ADDR of the user's device by comparing a detected hopping sequence with the hopping sequence associated with each possible BD_ADDR. Once the BD_ADDR of a user's device is determined, the user's location can thereafter be tracked as he moves from location to location using that device. To prevent this, the hopping sequence is determined as a known function of the master's BD_ADDR, a universal time parameter and a seed, which is a random or pseudo-random number communicated between the master to the slave and which is changed each time a new session begins on one of the user's devices operating on the piconet. The eavesdropper is then impeded from associating a detected pattern of channel usage with a particular master's BD_ADDR and its user.

 
Web www.patentalert.com

< Intermittent, low bandwidth, wireless data network and method of operation thereof

< Method for preserving calls when service is interrupted to a mobile unit in a wireless communication system

> Echo canceling system for a bit pump and method of operating the same

> Generation of test suites for interoperability of reactive communication systems

~ 00231