A method and apparatus are disclosed for MAP decoding of signals encoded using error correction codes to make maximum probability decisions about each transmitted bit. A MAP decoding algorithm is disclosed that exploits properties of Reed-Muller error correction codes that use q-ary block codes to provide a decoding algorithm having a complexity that is proportional to n logq n for Reed-Muller codes. The disclosed MAP decoding algorithm employs two matrices D and {overscore (D)} to represent the code set and has an overall complexity that is exponential for a general code set. For Reed-Muller codes, the disclosed MAP decoding algorithm employs matrices Bi and {overscore (Bi)} that are sparse matrices (i.e., contain many zero entries), thereby reducing the number of required operations and yielding a complexity that is proportional to n logq n. In addition, the disclosed MAP decoding algorithm permits faster decoding by permitting a parallel implementation having a critical path length that is proportional to 2 logq n for Reed-Muller codes.

 
Web www.patentalert.com

< Methods and devices for scheduling transmissions in interference-limited networks

< High speed syndrome-based FEC encoder and decoder and system using same

> Adhering layers to metals with dielectric adhesive layers

> Optical routers based on surface plasmons

~ 00234