A process for controlling both fireside ash deposits and corrosion, and fouling, corrosion, and emissions due to SO3 formation within a fossil-fuel-fired combustion system, such as a furnace forming part of an electrical power generating plant. A solution of a soluble magnesium compound, which can be derived from wastes, such as the bleed stream from the power plant's SO2 scrubber, is injected into the combustion products within the furnace in the form of a fine spray and at a point at which the temperature is sufficiently high to produce submicron-size MgO particles. The SO3 reacts with the MgO particles to form MgSO4. Insoluble magnesium compounds can be added to the solution to produce larger (micron sized) MgO particles on thermal decomposition. The micron-sized MgO particles are deposited on furnace surfaces to reduce ash deposits and to reduce catalytic generation of SO3. The boiler wastes can be reacted with other industrial process waste products to provide marketable chemicals.

 
Web www.patentalert.com

< Emulsions including surface-modified inorganic nanoparticles

< Process of making hydrophobic metal oxide nanoparticles

> Multicolumn selectivity inversion generator for production of ultrapure radionuclides

> Selective fluoride and ammonia removal by chromatographic separation of wastewater

~ 00237