An object recognizing apparatus is provided which is capable of precisely recognizing an object in an input image with the use of a corresponding learning image even when a local-segment of the input image coincides with a learning-local-segment of another similar learning image. The apparatus comprises (1) image dividing means for dividing an input image, which is received from image input means, into local-segments, (2) similar-local-segment extracting means for extracting a similar learning-local-segment to the local-segment of the input image from a learning image database, (3) object position estimating means for estimating the position of an object to be identified in the input image from the coordinates of the local-segment and the coordinates of the learning-local-segment corresponding to the local-segment, (4) counting means for counting the local-segments coincide with their corresponding learning-local-segments, and (5) object determining means for judging that the object to be identified is present when a result of counting is greater than a predetermined number. Consequently, the object and its position in any input image can be detected at higher accuracy.

 
Web www.patentalert.com

< Image processing

< Stroke data editing device

> Context discriminate classification for digital images

> Feature-based detection and context discriminate classification for digital images

~ 00238