Electrical contact surfaces of a bipolar plate for a fuel cell assembly are formed of metals or metal alloys which when oxidized form highly conductive oxide passivation layers, thus maintaining high electrical conductivity and continuity through the fuel cell and forestalling corrosion failure of a cell assembly. Alloy composition systems such as, but not limited to, Ti—Nb, Ti—Ta, La—Sr—Cr, and La—Sr—Co are known to form oxide passivation layers which are highly conductive. The passivation layers may be formed in situ after assembly of a fuel cell or may be provided in an oxidative step during manufacture. The bipolar plate may be formed entirely of one or more of such alloys or may be formed of an inexpensive substrate metal having the alloy layers coated thereupon.

 
Web www.patentalert.com

< Load following algorithm for a fuel cell based system

< Perovskite electrodes and method of making the same

> Strategy for minimizing noise perception in a vehicle

> Diffusion media with microporous layer

~ 00259