A fluid bearing design is provided which according to one aspect includes a shaft defining together with a surrounding sleeve an asymmetric journal bearing, and a thrust bearing at or near an end of the shaft towards which the asymmetric journal bearing is pumping, with that end of the shaft being closed off. The journal bearing asymmetry establishes a hydraulic pressure toward the closed end of the shaft. This pressure provides an axial thrust to set the bearing gap for the conical bearing. The conical bearing itself is a relatively balanced bearing, although it may have a bias pumping toward the shaft and the journal bearing. A pressure closed equalization path from the journal bearing through the conical bearing to the end of the shaft may be established to maintain a constant hydraulic force across the conical bearing, and which may also prevent any asymmetry in the conical bearing from affecting the net thrust force acting upon the end of the shaft where the conical bearing is located. Alternatively, in a fluid dynamic bearing design comprising a shaft and a thrust plate at or near an end of the shaft, asymmetry is again established along the journal bearing to establish a pressure gradient directed toward the thrust bearing.

 
Web www.patentalert.com

< Rolling bearing apparatus for swing arm

< Multi-layered aluminum-base bearing

> Bearing unit, and motor using same

> Flanged bushes and methods for the manufacture thereof

~ 00261