The present invention is directed toward methods and apparatuses for encapsulating a microelectronic die or another type of microelectronic device. One aspect of the present invention is directed toward packaging a microelectronic die that is attached to either a first surface or a second surface of a substrate. The die can be encapsulated by positioning the die in a cavity of a substrate and sealing the substrate to the substrate. The method can further include injecting an encapsulation compound into the cavity at a first end of the substrate to move along the first surface of the substrate. This portion of the compound defines a first flow of compound along the first surface that moves in a first direction from a first end of the substrate toward a second end of the substrate. Several embodiments of the method also include driving a portion of the compound through the substrate at a pass-through location or a secondary gate that is spaced apart from the first end of the substrate to generate a second flow of compound along the second surface of the substrate. The second flow of compound moves in a second direction toward the first end of the substrate. As the first and second flows of compound move through the mold, the method includes inhibiting a third flow of compound from moving in the first direction along the second surface of the substrate between the first end of the substrate and the pass-through location.

 
Web www.patentalert.com

< Semiconductor device

< Building metal pillars in a chip for structure support

> Method and apparatus for using capacitively coupled communication within stacks of laminated chips

> Three-dimensional stacked semiconductor package with metal pillar in encapsulant aperture

~ 00272