Methods of generating electricity from a fuel cell system and fuel cell systems are provided. The fuel cell system comprises a fuel cell stack divided into an anode-side sub-stack, central sub-stack, and cathode-side sub-stack by current collectors positioned at each end of the fuel cell stack and two current collectors positioned at intermediate positions of the fuel cell stack. A collector switch connects the current collectors positioned at each end of the fuel cell stack and the current collectors at intermediate positions to a load. The fuel cell system further comprises a means of controlling the collector switch and a means of measuring the temperature of the fuel cell stack. The collector switch is controlled with the means of controlling the collector switch so that the central sub-stack generates electricity before the anode-side sub-stack and the cathode-side sub-stack start to generate electricity. The temperature of the fuel cell stack is measured using the means of measuring the temperature. The collector switch is controlled with the means of controlling the collector switch so that electricity is generated by the anode-side sub-stack, cathode-side sub-stack, and central sub-stack when the means of measuring the temperature of the fuel cell stack measures a temperature greater than or equal to a predetermined temperature. In other embodiments of the invention the means of controlling the collector switch controls the collector switch in response to measurements of the ambient temperature adjacent the fuel cell stack, the voltage across the central sub-stack, or the interval of time from the start of electrical generation of the central sub-stack.

 
Web www.patentalert.com

< Fuel cell system having drain for condensed water stored in reforming reactor

< Humidification of reactant streams in fuel cells

> Pressure regulation of a fuel cell hydrogen tank system

> Fuel gas generating apparatus for a fuel cell

~ 00277