A method, system and computer program product are provided for scaling, or dimensionally reducing, multi-dimensional data sets that scale well for large data sets. The invention scales multi-dimensional data sets by determining one or more non-linear functions between a sample of points from the multi-dimensional data set and a corresponding set of dimensionally reduced points. Thereafter, these one or more non-linear functions are used to non-linearly map additional points. The additional points may be members of the original multi-dimensional data set or may be new, previously unseen points. In an embodiment, the determination of the non-linear relationship between the sample of points from the multi-dimensional data set and the corresponding set of dimensionally reduced points is performed by a self-learning system such as a neural network. The additional points are mapped using the self-learning system in a feed-forward/predictive manner.

 
Web www.patentalert.com

< Method, system, and apparatus for casual discovery and variable selection for classification

< Method and apparatus for automatic synthesis of controllers

> Methods of identifying patterns in biological systems and uses thereof

> Simulation system for a simulation engine with a help website and processing engine

~ 00291