Highly porous, low-k dielectric materials are mechanically reinforced to enable the use of these low-k materials as intralayer and interlayer dielectrics in advanced integrated circuits such as those which incorporate highly porous materials in a Cu damascene interconnect technology. An integrated circuit, embodying such a mechanically reinforced dielectric layer generally includes a substrate having interconnected electrical elements therein, a copper-diffusion barrier or etch stop layer disposed over the substrate, the copper-diffusion barrier or etch stop layer being patterned so as to provide a plurality of electrically insulating structures, and a low-k dielectric layer disposed around the plurality of structures. A process, for making a mechanically reinforced, highly porous, low-k dielectric layer, generally includes forming a copper-diffusion or etch stop layer on a substrate, patterning the copper-diffusion or etch stop layer such that a plurality of structures are formed, the structures each having a top surface, forming a low-k dielectric layer over and adjacent to the structures, the low-k dielectric layer having a top surface, and polishing the low-k dielectric layer such that its top surface is substantially even with the top surfaces of the structures. The structures may be rectangular posts, or more geometrically complex forms. The structures may be identical, or a combination of various forms.

 
Web www.patentalert.com

< Method for precisely forming light emitting layers in a semiconductor device

< Semiconductor substrate and method of fabricating semiconductor device

> Flow-fill structures

> Colloidal solution comprising silver metal particles and a silane derivative

~ 00292