An image reader of the stepping image reading type, by time division using a fluorescent lamp using a dielectric barrier discharge, in which for each divided image uniform lamp emission is always enabled and which can react advantageously especially when the image read rate increases is achieved by providing an image reader having a lighting part with a fluorescent lamp which use a dielectric barrier discharge and produces pulse emission and an inverter circuit which feeds this fluorescent lamp; a CCD line sensor which continuously receives the reflection light reflected by a manuscript and emitted by this fluorescent lamp, time-divided; and a controller which resets a divided image which is recognized by this CCD line sensor and which controls the timing of the start of recognition of the next divided image and which sends this timing signal to the inverter circuit as well, where the controller, within a given time in which the CCD line sensor recognizes a divided image of the manuscript, sends a flashing signal to the inverter circuit which corresponds to the frequency of pulse emission of the fluorescent lamp in order to keep the luminous quantities of the fluorescent lamp at a given value, where the lighting part, as an oscillator, drives the flashing signal of the inverter circuit and in this way, the fluorescent lamp carries out a pulse emission with a frequency which corresponds directly to the frequency of the flashing signal.

 
Web www.patentalert.com

> Liquid crystal display device

~ 00311