An electricity generation system having the ability to generate clean electrical power by mechanically capturing the power of the wind. The system utilizes one or more modular wind collecting sail assemblies that are mounted on an upright oriented pole assembly. The bottom end of the pole assembly is rigidly connected to a horizontally oriented elongated spring-motor primary winding axle who's opposite ends are journaled in a base assembly. Each end of the spring-motor primary winding axle is connected to a one way sprague coupling. That coupling is in turn connected to the spring-motor secondary winding axle having one or more spring motors mounted thereon. The inner end of each spring motor metal band is secured to the spring-motor secondary winding axle. When the wind force bends the wind collecting sail assembly from its static upright position, the spring-motor primary winding axle will be rotated causing the spring motors to be wound incrementally each time the wind blows the sail from its static upright position. The spring motor housing is releasably connected to a stationary retention member to prevent rotation of the spring motor housing until the spring motors are wound a sufficient amount. An electricity generator is mounted on the base assembly and there is rotation transmission structure connected to the power generation drive shaft of the electricity generator. When the spring motor assembly has been sufficiently wound, a timing gear assembly releases the motor spring housing assembly allowing it to rotate freely to dissipate stored energy and drive the electricity generator. This cycle is repeated throughout the day to generate electricity when the wind is blowing.

 
Web www.patentalert.com

> Method of forming an oxide film

~ 00313