An apparatus for high-throughput analysis of compound absorption in a controlled environment that closely resembles in-vivo conditions. The apparatus includes at least one tissue-receiving enclosure that is capable of interfacing (e.g., via transfer of fluids, electronically, etc.) with a variety of preparative devices and analytical instrumentation. In some variations, the tissue-receiving enclosure is formed from two housings, which, when engaged, have a capsular shape. The enclosure receives a tissue sample in the form of an un-everted or everted intestinal segment or tubular artificial membrane. The tissue sample is coupled to a generally cylindrical tissue support. The tissue support and the enclosure are axially aligned, and openings at the ends of the enclosure align with openings at the ends of the tissue support. Two feed fittings, one for each end of the enclosure, forcefully mate with the aligned openings in the housing and the tissue support. The feed fitting seals against the ends of the tissue support, forming "outer" and "inner" chambers within the enclosure, with the intestinal tissue being the interface between the chambers. It is across this interface that absorption occurs.

 
Web www.patentalert.com

> Method and apparatus for solids processing

~ 00327