A computer-assisted technique for constructing a three-dimensional model on top of one or more images (e.g., photographs) such that the model's parameters automatically match those of the real world object depicted in the photograph(s). Camera parameters such as focal length, position, and orientation in space may be determined from the images such that the projection of a three-dimensional model through the calculated camera parameters matches the projection of the real world object through the camera onto the image surface. Modeling is accomplished using primitives, such as boxes or pyramids, which may be intuitively manipulated to construct the three-dimensional model on a video display or other display screen of a computer system with a two-dimensional input controller (e.g., a mouse, joystick, etc.) such that the displayed three-dimensional object manipulation emulates physical three-dimensional object manipulation. Camera and primitive parameters are incrementally updated to provide visual feedback of the effect of additional constraints on the three-dimensional model, making apparent which user action may have been responsible for any failure to provide a modeling solution and, thus, allowing for rapid reversal and correction thereof. Surface properties (i.e., textures) may be extracted from the images for use in the three-dimensional model.

 
Web www.patentalert.com

> Mounting/adjusting mechanism for vision enhancement system

~ 00333