The invention described herein represents a significant improvement for the concealment of objects and people. Thousands of light receiving segmented pixels and sending segmented pixels are affixed to the surface of the object to be concealed. Each receiving segmented pixel receives colored light from the background of the object. Each receiving segmented pixel has a lens such that the light incident upon it is segmented to form focal points along a focal curve (or plane) according to the light's incident trajectory. In a first embodiment, this incident light is channeled by fiber optics to the side of the object which is opposite to each respective incident light segment. The light which was incident on a first side of the object traveling at a series of respective trajectories is thus redirected and exits on at least one second side of the object according to its original incident trajectory. In this manor, incident light is redirected as exiting light that mimics the incident light's trajectory, wavelength, color, and intensity such that an observer can "see through" the object to the object's background. In a second embodiment, this incident light is segmented according to trajectory, and detected electronically by photo diodes. It is then electronically reproduced on at least one second side of the object by arrayed LEDs. In this manor, incident light is reproduced as exiting light which mimics trajectory, wavelength, color, and intensity such that an observer can "see through" the object to the background. In both embodiments, this process is repeated many times, in segmented pixel arrays, such that an observer looking at the object from any perspective actually "sees the background" of the object corresponding to the observer's perspective. The object having thus been rendered "invisible" to the observer.

 
Web www.patentalert.com

> Light distribution apparatus and methods for illuminating optical systems

~ 00340