Double-stranded RNA (dsRNA) induces sequence-specific post-transcriptional
gene silencing in many organisms by a process known as RNA interference
(RNAi). Using a Drosophila in vitro system, we demonstrate that 19-23 nt
short RNA fragments are the sequence-specific mediators of RNAi. The
short interfering RNAs (siRNAs) are generated by an RNase III-like
processing reaction from long dsRNA. Chemically synthesized siRNA
duplexes with overhanging 3' ends mediate efficient target RNA cleavage
in the lysate, and the cleavage site is located near the center of the
region spanned by the guiding siRNA. Furthermore, we provide evidence
that the direction of dsRNA processing determines whether sense or
antisense target RNA can be cleaved by the produced siRNP complex.