A magnetic resonance tomography apparatus, comprising a gradient system that can generate at least one spatially varying and optionally time-varying magnetic field for at least one-dimensional local encoding of measuring signals in an area of a test sample to be imaged, is characterized in that the gradient system contains at least one subsystem which can generate a non-bijective spatially varying magnetic field (=NBSEM or ambivalent/non-bijective spacially encoding magnetic field) for local encoding, such that the function of the field strength of such an NBSEM within the area to be imaged has at least one local extreme value (maximum or minimum), such that the area to be imaged is divided along the hyper surface formed by the entirety of all local extreme values of the at least one NBSEM into ng partial areas, with ng.gtoreq.2, that the magnetic field profile has a non-unidirectional distribution within and/or over these partial areas, and that least ng receiver coils are provided which have a differing sensitivity in these partial areas. The apparatus can produce images of the same quality with smaller magnetic field differences and permits easy realization.

 
Web www.patentalert.com

> Method of magnetic resonance imaging

~ 00343