A controller f or multi-DOF active vibration isolation accounts for plant uncertainties and payload disturbances using dynamic frequency-shaped sliding control. Modal decomposition rewrites a multi-DOF vibration control problem as a combination of modal problems. Modal parameters can be extracted. Target frequency-domain performance, e.g., a skyhook, is recast as a frequency-shaped sliding surface. Boundary layer approximation is examined. Skyhook can be robustly achieved. The manifold is also extends to adaptive vibration isolation without model reference. Nonlinear target dynamics of the same order as the plant can be attained. Control can be achieved without measuring excitation or knowing mass, stiffness and damping matrices. Control for plants subject to disturbances other than vibration can be achieved for any that can be described by equations the same character as those that describe mechanical dynamic systems. The target dynamics can be any, even non-linear.

 
Web www.patentalert.com

> Time-delay discriminator

~ 00345