The present invention provides relates to a crosslinkable, proton-conducting membrane having a crosslinked structure, excellent in heat resistance, durability, dimensional stability and fuel barrier characteristics, and showing excellent proton conductivity at high temperature, characterized by comprising (a) an organic/inorganic hybrid structure (A) covalently bonded to 2 or more silicon-oxygen crosslinks and, at the same time, having a carbon atom, and (b) an acid containing structure (B) having an acid group, covalently bonded to a silicon-oxygen crosslink and having an acidic group; and provides a fuel cell using the same membrane. The present invention also provides a method for producing the proton-conducting membrane, comprising steps of preparing a mixture containing an organic/inorganic hybrid, crosslinkable compound (C) and compound (D), the former having 2 or more crosslinkable silyl groups and carbon atoms each being bonded to the silyl group via the covalent bond and the latter having a crosslinkable silyl group and acid group, as the first step; forming the above mixture into a film as the second step; and hydrolyzing/condensing or only condensing the hydrolyzable silyl group contained in the mixture formed into the film to form a crosslinked structure as the third step.

 
Web www.patentalert.com

> Micromechanical electrostatic resonator

~ 00346