An apparatus for vaporizing a liquid and heating the vaporized liquid to an elevated temperature. The apparatus has a heat transfer wall having an outer surface for receiving heat and transferring the heat to an inner surface. A wick material is disposed so that a portion of the wick material is in contact with the inner surface and another portion is remote from the heat transfer wall. A wick support in contact with the wick material opposite the inner surface of the heat transfer wall provides structural support to the wick material and further provides a path for vaporized liquid to flow from the wick material. Vaporizable liquid is delivered to the portion of the wick material that is remote from the heat transfer wall and is allowed to migrate to the portion that is in contact with the inner surface. Heat from the inner surface converts the liquid to a vaporized liquid. Optionally, a gaseous fuel may be introduced into the wick support for pre-heating and mixing with the vaporized liquid. Vaporized liquid flows out of the wick material through the wick support and into a downstream superheater that preferably houses a heat exchange device. The heat exchange device is in thermal communication with the inner surface of the heat transfer wall for receiving and transferring heat to the vaporized liquid. The apparatus can include multiple vaporization units connected to common and/or different heat sources. Methods for making an apparatus for vaporizing a liquid and methods for vaporizing a liquid are also disclosed.

 
Web www.patentalert.com

> Reduced shedding regenerator and method

~ 00348