A method of repairing damaged low-k dielectric materials is disclosed. Plasma-based processes, which are commonly used in semiconductor device manufacturing, frequently damage carbon-containing, low-k dielectric materials. Upon exposure to moisture, the damaged dielectric material may form silanol groups. In preferred embodiments, a two-step approach converts the silanol to a suitable organic group. The first step includes using a halogenating reagent to convert the silanol to a silicon halide. The second step includes using a derivatization reagent, preferably an organometallic compound, to replace the halide with the suitable organic group. In a preferred embodiment, the halogenating agent includes thionyl chloride and the organometallic compound includes an alkyllithium, preferably methyllithium. In another preferred embodiment, the organometallic compound comprises a Grignard reagent. Embodiments disclosed herein advantageously enable the manufacturer to engineer the density, polarization, and ionization properties of the low-k dielectric material by selective incorporation of the organic group.

 
Web www.patentalert.com

> Method for forming plasma enhanced deposited, fully oxidized PSG film

~ 00351