A system and method for fault detection is provided. The fault detection system provides the ability to detect symptoms of fault in turbine engines and other mechanical systems that have nonlinear relationships between two or more variables. The fault detection system uses a neural network to perform feature extraction from data for representation of faulty or normal conditions. The values of extracted features, referred to herein as scores, are then used to determine the likelihood of fault in the system. Specifically, the lower order scores, referred to herein as "approximate null space" scores can be classified into one or more clusters, where some clusters represent types of faults in the turbine engine. Classification based on the approximate null space scores provides the ability to classify faulty or nominal conditions that could not be reliably classified using higher order scores.

 
Web www.patentalert.com

> Methods and architecture for cross-device activity monitoring, reasoning, and visualization for providing status and forecasts of a users' presence and availability

~ 00355