This invention relates to systems, apparatus and methods of operating a wet combustion engine and apparatus therefore, capable of biologically burning fuels within a wet combustion chamber within a bioproactor system, including but not limited to, organic carbon containing materials especially biological, hazardous or toxic waste contaminants, in an environmentally sensitive manner. An integrated computer control system that, proactively and pre-emptively, uses feedback from bio-sensors, to monitor, record and control applicable components of the bio-system, to optimize, replenish, and sustain exponential growth of selected life-forms, including but not limited to microbes such as bacteria. In the intake cycle, a suitably prepared fuel mixture is metered into the wet combustion diffusion separation membrane chamber located within the life-support chamber of the bioproactor. In the combustion cycle, diffusion and combustion rates are monitored and timed. In the exhaust cycle, products of combustion, including water and incomplete combustion by-products both organic and inorganic, are removed. The above cycles may be repeated sequentially. The subsequent accumulation of all of the exhaust cycle's products of combustion may be collected, stored, classified, separated, recycled or discharged. Some of the potential energy released during the combustion cycle's reaction directly results in the conversion of wastes, the generation of gases and, in the case of organic carbon fuels, the generation of water. Other uses of the kinetic and potential energy released by this engine include, but are not limited to the, mechanical movements of actuators, and heat transfer to heat exchangers.

 
Web www.patentalert.com

> Multi-component molecular sieve catalyst compositions and their use in aromatics reactions

~ 00361