The previously described shortcomings are solved by a system and method herein that allows for the creation of scaleable wireless data packet networks notwithstanding capacity restrictions of routers used within the network. More specifically, a GGSN is formed to receive an address that is assigned to a different GGSN for support. Stated differently, a GGSN supports an address that is assigned to a different GGSN for support by being responsible for creating a PDP context for that address. Accordingly, because subnet addresses will be assigned to specific GGSNs in one embodiment of the described invention, each GGSN is formed to examine a received address, determine what GGSN is responsible for supporting that address and to forward the address to the responsible GGSN along with an initially requested APN and with vendor specific attributes. The GGSN to which the address is being forwarded is sent to the APN so that it will know the destination network with which the context activation is to be established. The vendor specific attributes are sent so that additional functionality such as billing may be properly performed and implemented. Accordingly, the modified GGSN supports the creation of scaleable networks because each GGSN is able to determine whether an address that it received from a remote DHCP server is one that it can support, and if not, what GGSN is able to support it. Thus, the networks may be grown and/or modified in a scaleable manner while minimizing impact to the existing network elements.

 
Web www.patentalert.com

> Optimal power saving scheduler for 802.11e APSD

~ 00362