Instead of using a demultiplexer to divide an optical signal into different wavelengths, this invention uses a plurality of cascade-connected optical attenuator elements whose attenuation factor and the wavelength characteristics thereof can both be varied. Reflective optical attenuator elements are used instead of the conventional transmissive elements, and these are column connected by connecting them in sequence to an optical circulator. In these reflective optical attenuator elements, the attenuation factor is controlled by displacing the mirror of a Fabry-Perot optical resonator along a direction perpendicular to the optical axis so that the reflecting surface moves away from the light spot, and the wavelength characteristics of the attenuation factor are controlled by displacing the mirror in the direction of the optical axis to change the resonant wavelength. In this way, it is possible to implement a variable-gain optical equalizer with a simple configuration and low insertion loss. Furthermore, since the reflective elements are configured so that the light-transmitting part (e.g., optical fiber) is only connected in one direction with respect to these elements, there are fewer physical constraints when attaching the movable plate of a device with a minute range of movement compared with a configuration where light-transmitting parts are connected in at least two directions of the element as is the case with transmissive elements.

 
Web www.patentalert.com

> Double-pass fiber amplifier

~ 00387