A method of manufacturing a thermal transfer device including providing first and second thermally conductive substrates that are substantially atomically flat, providing a patterned electrical barrier having a plurality of closed shapes on the first thermally conductive substrate and providing a nanotube catalyst material on the first thermally conductive substrate in a nanotube growth area oriented within each of the plurality of closed shapes of the patterned electrical barrier. The method also includes orienting the second thermally conductive substrate opposite the first thermally conductive substrate such that the patterned electrical barrier is disposed between the first and second thermally conductive substrates and providing a precursor gas proximate the nanotube catalyst material to facilitate growth of nanotubes in the nanotube growth areas from the first thermally conductive substrate toward, and limited by, the second thermally conductive substrate. In this thermal transfer device, introduction of current flow between the first and second thermally conductive substrates enables heat transfer between the first and second thermally conductive substrates via a flow of electrons between the first and second thermally conductive substrates.

 
Web www.patentalert.com

> Thin film electroluminescence display device and method of manufacturing the same

~ 00393