A method of characterizing shear wave anisotropy in a formation includes obtaining crossed-dipole waveforms from a borehole penetrating the formation over a range of depths and frequencies, determining far-field slowness in a fast-shear and slow-shear direction using a low-frequency portion of the crossed-dipole waveforms, and determining near-wellbore slowness in the fast-shear and slow-shear directions using a high-frequency portion of the crossed-dipole waveforms. The method also includes marking a selected depth of the formation as having intrinsic anisotropy if at the selected depth the far-field slowness in the fast-shear direction is less than the far-field slowness in the slow-shear direction and the near-wellbore slowness in the fast-shear direction is less than the near-wellbore slowness in the slow-shear direction. The selected depth is marked as having stress-induced anisotropy if the far-field slowness in the fast-shear direction is less than the far-field slowness in the slow-shear direction and the near-wellbore slowness in the fast-shear direction is greater than the near-wellbore slowness in the slow-shear direction.

 
Web www.patentalert.com

> Method and apparatus for seismic data acquisition

~ 00399