Degree of outlier of one input data is calculated by an amount of change in a learned probability density from that before learning as a result of taking in of the input data. This is because data largely differing in a tendency from a so far learned probability density function can be considered to have a high degree of outlier. More specifically, a function of a distance between probability densities before and after data input is calculated as a degree of outlier. Accordingly, a probability density estimation device appropriately estimates a probability distribution of generation of unfair data while sequentially reading a large volume of data and a score calculation device calculates and outputs a degree of outlier of each data based on the estimated probability distribution.

 
Web www.patentalert.com

< Systems and methods for designing and manufacturing engineered objects

> Methods and systems for applying genetic operators to determine system conditions

~ 00411