Data slices of historical time series are leveraged to facilitate in more accurately predicting like data slices of future time series. Different predictive models are employed to detect outliers in different data slices to enhance the accuracy of the predictions. The data slices can be temporal and/or non-temporal attributes of a data set represented by the historical time series. In this manner, for example, a historical time series for a network location can be sliced temporally into one hour time periods as a function of a day, a week, a month, a year, etc. Outliers detected in these data slices can then be mitigated utilizing the predictive time series model by replacing the outlier with the expected value. The mitigated historical time series can then be employed in a predictive model to predict future web traffic for the network location (and advertising revenue values) with a substantial increase in accuracy.

 
Web www.patentalert.com

< Inertial GPS navigation system using injected alignment data for the inertial system

> Method for the identification and/or the quantification of a target compound obtained from a biological sample upon chips

~ 00419