An improved simulated climbing wall provides a self-regulating endless climbing surface. The structure includes a form including upper and lower at least partially cylindrical outer surfaces, a planar forward surface, and an open back surface. A continuous belt includes an inner surface and an outer surface. The inner surface is disposed in sliding engagement with the cylindrical surfaces and planar forward surface of the form, and the outer surface of the belt includes a plurality of raised features configured for climbing by a user. A tensioning shoe engages with the inner surface of the belt through the open back surface of the form, and a mechanism, coupled to the tensioning shoe, is operative to a) relieve tension on the belt as a user climbs upwardly, thereby increasing rotational slippage of the belt around the form, and b) increase tension on the belt as a user moves downwardly, thereby reducing or terminating rotational slippage of the belt around the form. In the preferred embodiment, a pair of pivoting levers are provided, each having one end coupled to a climber and a second end coupled to the tensioning shoe such that, as a climber ascends the belt, the levers are raised, reducing the frictional engagement of the inner surface of the belt against the form, and as a climber moves downwardly on the belt, the levers are lowered, increasing the frictional engagement of the inner surface of the belt against the form.

 
Web www.patentalert.com

< Proportional brake light display system

> Chest-developing exerciser

~ 00425