A method is disclosed for collecting and processing raw process data. The method includes processing the raw data through a process model to obtain a prediction of the process quality; processing this prediction through two dynamic transfer functions thus creating two intermediate signals; storing the two intermediate signals as a function of time; retrieving at the time of a real and validated measurement of the process quality from the history the absolute minimum value and maximum value of the two intermediate signals in the time period corresponding to a minimum and maximum specified deadtime, in which the absolute minimum value and maximum values define the minimum and maximum prediction possible; calculating the deviation as being the difference between the real and validated measurement and the uncertainty area encompassed between the minimum and maximum prediction possible; incorporating the deviation into the process model to calibrate the process model; and, repeating.

 
Web www.patentalert.com

< Multi-marker screening protocol for fetal abnormalities

> Protein design automation for protein libraries

~ 00427