In the field of multi-objective optimization using evolutionary algorithms conventionally different objectives are aggregated and combined into one objective function using a fixed weight when more than one objective needs to be optimized. With such a weighted aggregation, only one solution can be obtained in one run. Therefore, according to the present invention two methods to change the weights systematically and dynamically during the evolutionary optimization are proposed. One method is to assign uniformly distributed weight to each individual in the population of the evolutionary algorithm. The other method is to change the weight periodically when the evolution proceeds. In this way a full set of Pareto solutions can be obtained in one single run.

 
Web www.patentalert.com

< Neural prosthesis with fuzzy logic control system

> System and method of using synthetic variables to generate relational Bayesian network models of internet user behaviors

~ 00427