A method for recognition of an input human motion as being the most similar to one model human motion out of a collection of stored model human motions. In the preferred method, both the input and the model human motions are represented by vector sequences that are derived from samples of angular poses of body parts. The input and model motions are sampled at substantially different rates. A special optimization algorithm that employs sequencing constraints and dynamic programming, is used for finding the optimal input-model matching scores. When only partial body pose information is available, candidate matching vector pairs for the optimization are found by indexing into a set of hash tables, where each table pertains to a sub-set of body parts. The invention also includes methods for recognition of vector sequences and for speech recognition.

 
Web www.patentalert.com

< Methods and systems for controlling an image generator to define, generate, and view geometric images of an object

> High-speed function approximation

~ 00429