A combustor for a gas turbine engine is disclosed which is able to operate with high combustion efficiency, and low nitrous oxide emissions during gas turbine operations. The combustor consists of a can-type configuration which combusts fuel premixed with air and delivers the hot gases to a turbine. Fuel is premixed with air and is delivered to the combustor with a high degree of swirl motion. This swirling mixture of reactants is conveyed through a flowpath that expands; the mixture reacts, and establishes a central recirculation zone. An imperforate trapped vortex cavity is disposed proximal to the swirler apparatus which provides for a second reaction zone. Fresh fuel/air reactants are exchanged with burned products in the trapped vortex and a pilot flame is established in the trapped cavity. The imperforate trapped cavity is not supplied with either fuel or air, but is cooled on a backside of the cavity with a flow of cooling air. The cooling air is then conveyed to the combustion chamber so as to not interfere with the critical flame holding flow features of the combustor.

 
Web www.patentalert.com

< Method for manufacturing nano-gap electrode device

> Equipment and method for feeding liquid gradient in nano/micro liquid chromatography

~ 00473