Methods and apparatus are provided pertaining to a design of experiments. The method comprises generating a data set from historical data; identifying and removing any fault data points in the data set so as to create a revised data set; supplying the data points from the revised data set into a nonlinear neural network model; and deriving a simulator model characterizing a relationship between the input variables and the output variables. The apparatus comprises means for generating a data set from historical data; means for identifying and removing any fault data points in the data set so as to create a revised data set; means for supplying the data points from the revised data set into a nonlinear neural network model; and means for deriving a simulator model characterizing a relationship between the input variables and the output variables.

 
Web www.patentalert.com

< Genetic algorithm for microcode compression

> Probability estimate for K-nearest neighbor

~ 00473