Methods are described for identifying events that would be considered surprising by people and identifying how and when to transmit information to a user about situations that they would likely find surprising. Additionally, the methods of identifying surprising situations can be used to build a case library of surprising events, joined with a set of observations before the surprising events occurred. Statistical machine learning methods can be applied with data from the case library to build models that can predict when a user will likely be surprised at future times. One or more models of context-sensitive expectations of people, a view of the current world, and methods for recording streams or events before surprises occur, and for building predictive models from a case library of surprises and such historical observations can be employed. The models of current and future surprises can be coupled with display and alerting machinery.

 
Web www.patentalert.com

< Optimizing subset selection to facilitate parallel training of support vector machines

> Methods and apparatuses for classifying electronic documents

> Method and apparatus for automatically and continuously updating prediction models in real time based on data mining

~ 00511