Bayesian super-resolution techniques fuse multiple low resolution images (possibly from multiple bands) to infer a higher resolution image. The super-resolution and fusion concepts are portable to a wide variety of sensors and environmental models. The procedure is model-based inference of super-resolved information. In this approach, both the point spread function of the sub-sampling process and the multi-frame registration parameters are optimized simultaneously in order to infer an optimal estimate of the super-resolved imagery. The procedure involves a significant number of improvements, among them, more accurate likelihood estimates and a more accurate, efficient, and stable optimization procedure.

 
Web www.patentalert.com

< Knowledge repository using configuration and document templates

> Situation dependent operation of a semantic network machine

> Self organizing model for artificial life

~ 00513