A method of fabrication of laser gain material and utilization of such media includes the steps of introducing a transitional metal, preferably Cr.sup.2+ thin film of controllable thickness on the ZnS crystal facets after crystal growth by means of pulse laser deposition or plasma sputtering, thermal annealing of the crystals for effective thermal diffusion of the dopant into the crystal volume with a temperature and exposition time providing the highest concentration of the dopant in the volume without degrading laser performance due to scattering and concentration quenching, and formation of a microchip laser either by means of direct deposition of mirrors on flat and parallel polished facets of a thin Cr:ZnS wafer or by relying on the internal reflectance of such facets. The gain material is susceptible to utilization of direct diode or fiber laser pumping of a microchip laser with a level of power density providing formation of positive lens and corresponding cavity stabilization as well as threshold population inversion in the laser material. Multiple applications of the laser material are contemplated in the invention.

 
Web www.patentalert.com

< Portable laser device

> Optical coupling apparatus for a dual column charged particle beam tool for imaging and forming silicide in a localized manner

> Scanning microscope and specimen image obtaining method in which adjacent data obtaining points are not consecutively obtained

~ 00525