A radio-controlled toy skateboard comprises a deck and front and rear trucks. The individual wheels of the rear truck can be controlled separately responsive to radio signals from a remote transmitter for rotation in either direction, while the front wheels rotate freely. Also responsive to radio control signals, the rear truck is controllably pivoted with respect to the deck about a kingpin axis that is inclined rearwardly, while the front truck pivots freely about a forwardly inclined kingpin axis. When the rear truck is thus pivoted, the deck tilts about its longitudinal centerline, causing the front truck to pivot correspondingly, steering the skateboard. A pair of modeled shoes are mounted for free pivoting about pivot axes. As the board tilts toward one side or the other, the shoes pivot from a toes-in to a toes-out position, mimicing the foot movements of a live "skater". The forward shoe is mounted on a trolley sliding freely on an inclined ramp. When the board rests on a horizontal surface, the trolley slides forward, so that the forward shoe moves toward the forward end of the board; if the front end of the board is tilted upwardly, as in a "wheelie" manuever, the forward shoe slides rearwardly, as would that of a skater doing such a trick.

 
Web www.patentalert.com

< METHOD OF OPERATING A COMMUNICATION SYSTEM

> ENHANCED ZONE DETERMINATION

> Method for saving power in a wireless terminal and a terminal

~ 00526