A memory interface allows access SDRAM by receiving a column address for a data read or write of a burst of data units. Each data unit in the burst has an expected bit size. The interface generates n(n>1) column memory addresses from the received column address. The interface accesses the synchronous dynamic memory to read or write n bursts of data at the n column memory addresses. Preferably, the SDRAM is clocked at n times the rate of the interconnected memory accessing device, and the memory units. The data units in the n bursts preferably have one n.sup.th the expected bit size. In this way, SDRAM may be accessed with high memory bandwidth, without requiring an increase in the size of data units in the SDRAM, and the associated data bus. Conveniently, the interface may be operable in two separate modes or configurations. In one mode, SDRAM may be accessed through the interface in a conventional manner. In the second mode, SDRAM is accessed in multiple bursts for each received burst access. The interface may form part of a memory accessing device, or may be a separate component for use with such a device.

 
Web www.patentalert.com

< Semiconductor memory device and method for operating the same

> Data storage unit, data storage controlling apparatus and method, and data storage controlling program

> Method and system for optimizing memory allocation

~ 00531