An automated employee selection system can use a variety of techniques to
provide information for assisting in selection of employees. For example,
pre-hire and post-hire information can be collected electronically and
used to build an artificial-intelligence based model. The model can then
be used to predict a desired job performance criterion (e.g., tenure,
number of accidents, sales level, or the like) for new applicants. A wide
variety of features can be supported, such as electronic reporting.
Pre-hire information identified as ineffective can be removed from a
collected pre-hire information. For example, ineffective questions can be
identified and removed from a job application. New items can be added and
their effectiveness tested. As a result, a system can exhibit adaptive
learning and maintain or increase effectiveness even under changing
conditions.