A solid state imaging device, including: a plurality of storage wells which stores an optically generated charge that is generated at a photoelectric conversion region corresponding to an incident light, the plurality of storage wells being inside a substrate; wherein a plurality of the photoelectric conversion regions is arrayed on the substrate in a two dimensional matrix; a plurality of amplifiers each installed per every pair of the photoelectric conversion regions that are adjacent in one direction of the two dimensional matrix, outputting a pixel signal that corresponds to the optically generated charge retained in a floating diffusion region; a plurality of transfer controlling elements, a pair of which is installed in every pair of the photoelectric conversion regions, changing a potential barrier of an optically generated charge transfer route, the transfer route being between each of the storage wells in the pair of the photoelectric conversion regions and the corresponding floating diffusion region, and controlling a transfer of the optically generated charges; wherein each of the plurality of transfer controlling elements has a transfer gate installed on the substrate being separated by an insulation film, and an electric charge retention region being inside the substrate, retaining the optically generated charge under the transfer gate; and wherein each of the plurality of amplifiers is provided with a transistor, a gate of each transistor having a ring-like shape, each of the gates being installed in a manner that at least a part of the gate is sandwiched by portions which are parts cut-off from each pair of the transfer gates, the pair of the transfer gates being adjacent in one direction of the two dimensional matrix.

 
Web www.patentalert.com

< Signal processing method and signal processing circuit

> Image pickup device and image pickup optical system that optically reduce color flares

> Smear correction in a digital camera

~ 00540