A method for providing independent static and dynamic models in a prediction, control and optimization environment utilizes an independent static model (20) and an independent dynamic model (22). The static model (20) is a rigorous predictive model that is trained over a wide range of data, whereas the dynamic model (22) is trained over a narrow range of data. The gain K of the static model (20) is utilized to scale the gain k of the dynamic model (22). The forced dynamic portion of the model (22) referred to as the b.sub.i variables are scaled by the ratio of the gains K and k. The b.sub.i have a direct effect on the gain of a dynamic model (22). This is facilitated by a coefficient modification block (40). Thereafter, the difference between the new value input to the static model (20) and the prior steady-state value is utilized as an input to the dynamic model (22). The predicted dynamic output is then summed with the previous steady-state value to provide a predicted value Y. Additionally, the path that is traversed between steady-state value changes.

 
Web www.patentalert.com

< Geometric end effector system

> End effector gripper arms having corner grippers which reorient reticle during transfer

> Automated pharmacy admixture system (APAS)

~ 00554