Simultaneous Dynamical Integration modeling techniques are applied to placement of elements of integrated circuits as described by netlists specifying interconnection of devices. Solutions to a system of coupled ordinary differential equations in accordance with Newtonian mechanics are approximated by numerical integration. A resultant time-evolving system of nodes moves through a continuous location space in continuous time, and is used to derive placements of the devices having one-to-one correspondences with the nodes. Nodes under the influence of net attractive forces, computed based on the interconnections between the morphable devices, tend to coalesce into well-organized topologies. Nodes are also affected by spreading forces determined by density fields that are developed based on local spatial node populations. The forces are optionally selectively modulated as a function of simulation time. The placements of the devices are compatible with various design flows, such as standard cell, structured array, gate array, and field-programmable gate array.

 
Web www.patentalert.com

< Test algorithm selection in memory built-in self test controller

> System and method for performing client-centric load balancing of multiple globally-dispersed servers

> Footwear with GPS

~ 00575